首页>技术服务>

动态测比表面和静态容量法测比表面及孔径的区别

动态测比表面和静态容量法测比表面及孔径的区别

发布日期:2013-05-03 来源:贝士德仪器 点击量:2103

比表面及孔隙度分析仪用于检测与分析粉体材料的表面特性:
比表面:单位质量粉体的总表面积(m2 /g)
孔径分布(孔隙度):单位质量粉体表面孔容随孔径的变化,包括总孔体积、平均孔径、孔容-孔径分布、最可几孔径等

氮吸附法
       超细粉体表面十分复杂,对其表面积和孔径分布无法直接测量,氮吸附法利用固体材料的低温物理吸附特性,用氮分子做“量具”,测出粉末表面的氮气吸附量,进而采用各种物理模型,准确计算出比表面及孔容-孔径分布。
相关的国家和国际标准 
   ISO-9277 / GB/T19587-2004  气体吸附BET法测定固态物质比表面积
   ISO 15901-2:2006 / GB/T21650.2-2008  气体吸附法分析介孔和大孔
   ISO 15901-3 / GB/T---2009  气体吸附法分析微孔

关于介孔孔径分析和微孔孔径分析
按孔径尺寸分类,≤2nm称为微孔,2-50nm称为介孔,≥50nm称为大孔
1. 介孔与大孔的孔径分析(孔径范围 2-500nm)
   从气体吸附规律发现,在毛细孔引力的作用下,气体分子可被吸入孔中并形成凝聚体,产生毛细凝聚现象所需的压力与孔径尺寸有定量对应关系,只要测出不同压力下孔内填充的气体量,便可计算出不同孔径孔的体积及其分布。
2. 微孔总孔体积分析:
   在介孔分析的基础上,用t-图法、DR法,推出﹤2nm 微孔的总孔体积。
3. 微孔孔径分布的精细分析(孔径范围 0.35-2nm):
   直径<2nm的孔称为微孔,在微孔的情况下,孔壁间的作用势能相互重叠,对气体的吸附能力比介孔大得多,要在很低的压力下产生气体的填充,介孔的分析模式已不适用,需用专门的微孔分析模型,如HK、FS、DFT等进行分析,才能得到微孔的分布曲线,对仪器软硬件的要求比介孔分析复杂的多。

动态测比表面和静态容量法测比表面及孔径的区别

发布日期:2021-04-11 来源:贝士德仪器 点击量:2103

比表面及孔隙度分析仪用于检测与分析粉体材料的表面特性:
比表面:单位质量粉体的总表面积(m2 /g)
孔径分布(孔隙度):单位质量粉体表面孔容随孔径的变化,包括总孔体积、平均孔径、孔容-孔径分布、最可几孔径等

氮吸附法
       超细粉体表面十分复杂,对其表面积和孔径分布无法直接测量,氮吸附法利用固体材料的低温物理吸附特性,用氮分子做“量具”,测出粉末表面的氮气吸附量,进而采用各种物理模型,准确计算出比表面及孔容-孔径分布。
相关的国家和国际标准 
   ISO-9277 / GB/T19587-2004  气体吸附BET法测定固态物质比表面积
   ISO 15901-2:2006 / GB/T21650.2-2008  气体吸附法分析介孔和大孔
   ISO 15901-3 / GB/T---2009  气体吸附法分析微孔

关于介孔孔径分析和微孔孔径分析
按孔径尺寸分类,≤2nm称为微孔,2-50nm称为介孔,≥50nm称为大孔
1. 介孔与大孔的孔径分析(孔径范围 2-500nm)
   从气体吸附规律发现,在毛细孔引力的作用下,气体分子可被吸入孔中并形成凝聚体,产生毛细凝聚现象所需的压力与孔径尺寸有定量对应关系,只要测出不同压力下孔内填充的气体量,便可计算出不同孔径孔的体积及其分布。
2. 微孔总孔体积分析:
   在介孔分析的基础上,用t-图法、DR法,推出﹤2nm 微孔的总孔体积。
3. 微孔孔径分布的精细分析(孔径范围 0.35-2nm):
   直径<2nm的孔称为微孔,在微孔的情况下,孔壁间的作用势能相互重叠,对气体的吸附能力比介孔大得多,要在很低的压力下产生气体的填充,介孔的分析模式已不适用,需用专门的微孔分析模型,如HK、FS、DFT等进行分析,才能得到微孔的分布曲线,对仪器软硬件的要求比介孔分析复杂的多。